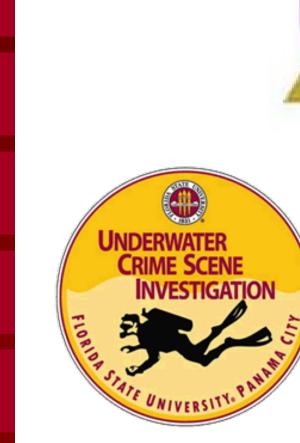
FSU PANAMA CITY

Underwater Crime Scene Investigation

SCHOOL OF CRIMINOLOGY & CRIMINAL JUSTICE

<u>The Need for</u> <u>Curriculum, Standards, and</u> <u>Training for</u> <u>ROVs in PSD and Port Security</u>

Lessons from an Evaluation Experiment


Mark Feulner M.A., M.S.

- Introduction
- Test Overview
- Lessons Learned
- Recommendations

Introduction

the second products

rswg

TEST OBJECTIVE

The purpose of this study was to evaluate the DIDSON-DH in terms of the current techniques available for conducting underwater searches and port security functions, and determine which situations for which it was best suited.

TEST DESIGN

The design incorporated three phases:

- Phase One Training & Protocol Development
- Phase Two Comparative Testing & Evaluation
- Phase Three Real-world Deployments

PHASE TWO

Test Parameters

- Test Operators
- Test Items
- Test Targets

TEST OPERATORS

- FBI Underwater Search and Evidence Recovery Team (USERT) – Long Beach
- NYPD Scuba Team
- Seattle Harbor Patrol Dive Team
- Jacksonville Sheriff's Office Dive Team

TEST ITEMS

The design incorporated four techniques:

- Traditional Hand Searches
- Side Scan Sonar Searches
- ROV Searches
- Handheld Sonar Searches

VIDEORAY ROV

The test utilized a VR Pro III GTO

TEST EXECUTION

The first week of Phase Two testing consisted of operator training

TEST EXECUTION

The second week of Phase Two testing consisted of SAR operations to gather test data

TEST RESULTS

PRIMARY OBSERVATIONS

Lessons Learned

- Learning Curves
- Comfort through Familiarity
- Innovation

LEARNING CURVES

- Differential Aptitudes
- Differential Interests

COMFORT & FAMILIARITY

- Learning Environment
- Confidence Building
- Experience
- Team Learning

SPACE TO INNOVATE

• Part of developing confidence

SUGGESTED APPLICATIONS

- Universal Standards
- Objective Training Criteria

• Group Learning

• Principle of FITT

Recommend

Universal Standards

- Baseline Knowledge
- Minimum Piloting Skills
- Common Technical Applications

OBJECTIVE TRAINING CRITERIA

- Based on universal standards, but specific to ROV being used
- Incremental moves from the simple to the more sophisticated
 - Assembly, surface piloting, hovering, underwater maneuvering, & so forth
- Most Important- it is shared with trainee

GROUP LEARNING

• Not just teaching skills – instilling confidence

FITT

- Frequency
- Intensity
- Time
- Technique

